ANNUAL WATER QUALITY REPORT

Reporting Year 2022

Presented By
Dartmouth Water Division

Este relatório contém informações importantes sobre a água potável. Ter alguém que traduza-lo para você, ou falar com alguém que entende-lo.

PWS ID#: MA 4072000
Continuing Our Commitment

Once again, we proudly present our annual water quality report. With a focus on customer service and efficient operations, we continue to strive for excellence through new water quality programs that will ensure reliable drinking water supplies for years to come. To maintain our commitment to you, we routinely collect and test water samples every step of the way - from the source waters right to your home or business - checking purity and identifying potential problems. We work with only state-certified laboratories that perform the required testing to maintain our quality assurance program. Staffed by highly trained scientists and technicians, these labs have the latest and most sophisticated instruments and can measure substances down to one part per trillion! We are committed to providing you with this information about your water supply because customers who are well informed are our best allies in supporting improvements necessary to maintain the highest drinking water standards.

This edition covers all testing completed from January through December 2022. We remain vigilant in meeting the challenges of source water protection, water conservation, and community education while continuing to serve the needs of all our water users. Please visit our annual open house, held at the beginning of May, when we celebrate National Drinking Water Week.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/hotline.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/safewater/lead.

Where Does My Water Come From?

Dartmouth’s water is supplied from 14 gravel-packed, or naturally developed, groundwater wells and one pumping station. Wells A, B, C, F-1, and F-2 have a combined capacity of 1,555 gallons per minute (gpm). These wells are located in the area of 299 Chase Road. Wells D, E-1, and E-2 have a combined capacity of 1,550 gpm. These wells are located in the area of 687 Chase Road. Wells V-1, V-2, V-3, Panelli-1, Panelli-2, Panelli-3, and Panelli Wellfield 4 have a combined capacity of 1,820 gpm. These wells are located in the area of 579 Old Westport Road. A map showing where the wells are located is available at the Water Division office at 751 Allen Street.

Purchased water from the City of New Bedford is treated at the Quittacas Water Treatment Plant and comes from a surface supply comprised of five ponds. The principal storage area is the Little Quittacas Pond, located in the Town of Rochester. The other ponds are Great Quittacas, Pocksha, Assawompset, and Long Pond, situated in the towns of Freetown, Lakeville, and Middleborough. Treatment consists of conventional filtration, disinfection, corrosion control, and fluoridation. Dartmouth pumps the water into our system from a facility located on Faunce Corner Road with a maximum rate of 4,000 gpm.

Community Participation

The Board of Public Works meets monthly. If you are interested in discussing water department issues with the board, please call the Department of Public Works at (508) 999-0740 and ask to be added to the agenda.

Questions?

Dartmouth Water is a division of the Department of Public Works. For more information about this report, or for any questions relating to your drinking water, please call Steven M. Sullivan, Water and Sewer Superintendent, at (508) 999-0742.
Substances That Could Be in Water

To ensure that tap water is safe to drink, the Department of Environmental Protection (DEP) and the U.S. Environmental Protection Agency (U.S. EPA) prescribe regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) and Massachusetts Department of Public Health (DPH) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material and can pick up substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

- **Microbial Contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;
- **Inorganic Contaminants**, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;
- **Pesticides and Herbicides**, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;
- **Organic Chemical Contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and which may also come from gas stations, urban stormwater runoff, and septic systems;
- **Radioactive Contaminants**, which can be naturally occurring or may be the result of oil and gas production and mining activities.

More information about contaminants and potential health effects can be obtained by calling the U.S. EPA’s Safe Drinking Water Hotline at (800) 426-4791.

Violation Information

We routinely monitor for the presence of drinking water contaminants. Testing results from February 2022 show that our system exceeded the standard or maximum contaminant level (MCL) for a group of five haloacetic acids (HAA5). The MCL for HAA5 is 60 parts per billion (ppb). The average amount detected is determined by averaging all samples collected at each sampling location for the past 12 months. The average level of HAA5 at our Reed Road location for February was 65 ppb.

The town converted from chlorine to chloramines as a means of disinfecting our water in March 2021. We have seen improvement and expect additional changes to alleviate this problem. It is important to note that samples collected in February 2022 fell well below the MCL for HAA5. This violation occurred due to the state requirement to use a 12-month average. It is apparent that the town’s comprehensive plan has been effective in improving water quality concerns, and improvements will continue to be made.

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

During routine monitoring in July 2022, our public water system tested positive for total coliforms. Our system was notified verbally on July 8, 2022, by our laboratory of one coliform-positive (E. coli-absent) sample collected on July 7, 2022. Repeat samples were collected on July 9, 2022, as required. Our system was also notified verbally on July 13, 2022, by our laboratory of one coliform-positive (E. coli-absent) sample collected on July 12, 2022. Repeat samples were collected on July 14, 2022, as required. These two total coliform-positive detects (greater than 5 percent of our finished water samples) constituted a Revised Total Coliform Rule Treatment Technique Trigger (RTCR TTT). This RTCR TTT required an RTCR Level 2 Assessment to be completed and submitted to DEP, Southeast Regional Office, by July 29, 2022.
Our water is monitored for many different kinds of substances on a very strict sampling schedule, and the water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The state recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

<table>
<thead>
<tr>
<th>SUBSTANCE (UNIT OF MEASURE)</th>
<th>YEAR SAMPLED</th>
<th>MCL [MRDL]</th>
<th>MCLG [MRDLG]</th>
<th>AMOUNT DETECTED</th>
<th>RANGE LOW-HIGH</th>
<th>AMOUNT DETECTED</th>
<th>RANGE LOW-HIGH</th>
<th>VIOLATION</th>
<th>TYPICAL SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha Emitters (pCi/L)</td>
<td>2021</td>
<td>15</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>0.5</td>
<td>NA</td>
<td>No</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Asbestos (MFL)</td>
<td>2022</td>
<td>7</td>
<td>7</td>
<td>ND</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>No</td>
<td>Decay of asbestos cement water mains; Erosion of natural deposits</td>
</tr>
<tr>
<td>Barium (ppm)</td>
<td>2022</td>
<td>2</td>
<td>2</td>
<td>NA</td>
<td>NA</td>
<td>0.0081</td>
<td>NA</td>
<td>No</td>
<td>Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits</td>
</tr>
<tr>
<td>Chlorine (ppm)</td>
<td>2022</td>
<td>[4]</td>
<td>[4]</td>
<td>1.47(^a)</td>
<td>0.10–2.66(^a)</td>
<td>1.75(^a)</td>
<td>1.15–2.24(^a)</td>
<td>No</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>Combined Radium (pCi/L)</td>
<td>2021</td>
<td>5</td>
<td>0</td>
<td>0.72</td>
<td>ND–1.20</td>
<td>0.5</td>
<td>NA</td>
<td>No</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride (ppm)</td>
<td>2022</td>
<td>4</td>
<td>4</td>
<td>NA</td>
<td>NA</td>
<td>0.7</td>
<td>0.4–0.9</td>
<td>No</td>
<td>Water additive which promotes strong teeth</td>
</tr>
<tr>
<td>Haloacetic Acids [HAAs]–Stage 2 (ppb)</td>
<td>2022</td>
<td>60 (^b)</td>
<td>NA</td>
<td>65(^a)</td>
<td>6–65(^a)</td>
<td>47.3(^b)</td>
<td>26.7–59.6(^a)</td>
<td>Yes(^b)</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Nitrate (ppm)</td>
<td>2022</td>
<td>10</td>
<td>10</td>
<td>0.61</td>
<td>0.59–0.63</td>
<td>0.0943</td>
<td>NA</td>
<td>No</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits</td>
</tr>
<tr>
<td>Perchlorate (ppb)</td>
<td>2020</td>
<td>2</td>
<td>NA</td>
<td>0.12</td>
<td>0.07–0.12</td>
<td>NA</td>
<td>NA</td>
<td>No</td>
<td>Inorganic chemicals used as oxidizers in solid propellants for rockets, missiles, fireworks, and explosives</td>
</tr>
<tr>
<td>PFAS6 (ppt)</td>
<td>2022</td>
<td>20 (^b)</td>
<td>NA</td>
<td>5.00(^b)</td>
<td>4.90–5.10(^b)</td>
<td>3.07(^a)</td>
<td>2.75–3.38(^a)</td>
<td>No</td>
<td>Discharges and emissions from industrial and manufacturing sources associated with the production or use of these PFAS, including production of moisture- and oil-resistant coatings on fabrics and other materials. Additional sources include the use and disposal of products containing these PFAS, such as firefighting foams.</td>
</tr>
<tr>
<td>Tetrachloroethylene (ppb)</td>
<td>2022</td>
<td>5</td>
<td>0</td>
<td>ND</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>No</td>
<td>Discharge from factories and dry cleaners</td>
</tr>
<tr>
<td>Total Organic Carbon (ppm)</td>
<td>2022</td>
<td>TT(^a)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>2.85</td>
<td>2.59–3.37</td>
<td>No</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>TTHMs [total trihalomethanes]–Stage 2 (ppb)</td>
<td>2022</td>
<td>80 (^b)</td>
<td>NA</td>
<td>32(^a)</td>
<td>17–59(^b)</td>
<td>45.8(^b)</td>
<td>36.5–59.1(^a)</td>
<td>No</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>2022</td>
<td>TT</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.29</td>
<td>0.03–0.29</td>
<td>No</td>
<td>Soil runoff</td>
</tr>
<tr>
<td>Turbidity (lowest monthly percent of samples meeting limit)</td>
<td>2022</td>
<td>TT = 95% of samples meet the limit</td>
<td>NA</td>
<td>NA</td>
<td>100</td>
<td>NA</td>
<td>No</td>
<td>Soil runoff</td>
<td></td>
</tr>
</tbody>
</table>
Tap water samples were collected for lead and copper analyses from sample sites throughout the community. The following table summarizes the results:

Copper (ppm)
- **Year Sampled:** 2022
- **Amount Detected (90th %ile):** 1.3
- **Sites Above AL/Total Sites:** 0/60
- **Violation:** No
- **Typical Source:** Corrosion of household plumbing systems; Erosion of natural deposits

Lead (ppb)
- **Year Sampled:** 2022
- **Amount Detected (90th %ile):** 15
- **Sites Above AL/Total Sites:** 0/30
- **Violation:** No
- **Typical Source:** Lead service lines; Corrosion of household plumbing systems, including fittings and fixtures; Erosion of natural deposits

Secondary Substances

<table>
<thead>
<tr>
<th>Substance</th>
<th>Unit of Measure</th>
<th>Year Sampled</th>
<th>AL</th>
<th>MCLG</th>
<th>Amount Detected (ppm)</th>
<th>Range Low-High</th>
<th>Violation</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>(ppb)</td>
<td>2022</td>
<td>200</td>
<td>NA</td>
<td>0.17</td>
<td>NA</td>
<td>No</td>
<td>Residual from water treatment process; Erosion of natural deposits</td>
</tr>
<tr>
<td>Chloride</td>
<td>(ppm)</td>
<td>2022</td>
<td>250</td>
<td>NA</td>
<td>22.9</td>
<td>NA</td>
<td>No</td>
<td>Erosion of natural mineral deposits</td>
</tr>
<tr>
<td>Manganese</td>
<td>(ppb)</td>
<td>2022</td>
<td>50</td>
<td>NA</td>
<td>0.0052</td>
<td>NA</td>
<td>No</td>
<td>Leaching from natural deposits</td>
</tr>
<tr>
<td>Sulfate</td>
<td>(ppm)</td>
<td>2022</td>
<td>250</td>
<td>NA</td>
<td>14.7</td>
<td>NA</td>
<td>No</td>
<td>Erosion of natural mineral deposits</td>
</tr>
</tbody>
</table>

Unregulated Substances

<table>
<thead>
<tr>
<th>Substance</th>
<th>Unit of Measure</th>
<th>Year Sampled</th>
<th>Amount Detected (ppb)</th>
<th>Range Low-High</th>
<th>Amount Detected (ppb)</th>
<th>Range Low-High</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromodichloromethane</td>
<td>ppb</td>
<td>2022</td>
<td>3.6</td>
<td>NA</td>
<td>6.14</td>
<td>4.51–7.92</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Chlorodibromomethane</td>
<td>ppb</td>
<td>2022</td>
<td>1.8</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ppb</td>
<td>2022</td>
<td>5.5</td>
<td>NA</td>
<td>38.1</td>
<td>18.2–50.3</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ppb</td>
<td>2021</td>
<td>0.9</td>
<td>ND–1.4</td>
<td>NA</td>
<td>NA</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Sodium</td>
<td>ppm</td>
<td>1/4/2020</td>
<td>55.7</td>
<td>48.1–55.7</td>
<td>25.50</td>
<td>NA</td>
<td>Natural sources; Runoff from use as salt on roadways; By-product of corrosion control</td>
</tr>
</tbody>
</table>

Other Unregulated Substances

<table>
<thead>
<tr>
<th>Substance</th>
<th>Unit of Measure</th>
<th>Year Sampled</th>
<th>Amount Detected (ppb)</th>
<th>Range Low-High</th>
<th>Amount Detected (ppb)</th>
<th>Range Low-High</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromodichloroacetic Acid</td>
<td>ppb</td>
<td>2021</td>
<td>4.25</td>
<td>ND–7.35</td>
<td>NA</td>
<td>NA</td>
<td>By-product of drinking water chlorination</td>
</tr>
<tr>
<td>Calcium</td>
<td>ppm</td>
<td>2022</td>
<td>NA</td>
<td>NA</td>
<td>4.94</td>
<td>NA</td>
<td>Residual from water treatment process; Erosion of natural deposits</td>
</tr>
<tr>
<td>Dichloroacetic Acid</td>
<td>ppb</td>
<td>2021</td>
<td>37</td>
<td>9.5–50.7</td>
<td>NA</td>
<td>NA</td>
<td>By-product of drinking water chlorination</td>
</tr>
<tr>
<td>Magnesium</td>
<td>ppm</td>
<td>2022</td>
<td>NA</td>
<td>NA</td>
<td>1.27</td>
<td>NA</td>
<td>Erosion of natural mineral deposits</td>
</tr>
<tr>
<td>Monobromoacetic Acid</td>
<td>ppb</td>
<td>2021</td>
<td>1.6</td>
<td>ND–1.6</td>
<td>NA</td>
<td>NA</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Monochloroacetic Acid</td>
<td>ppb</td>
<td>2021</td>
<td>4.9</td>
<td>2.5–7.1</td>
<td>NA</td>
<td>NA</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Potassium</td>
<td>ppm</td>
<td>2022</td>
<td>NA</td>
<td>NA</td>
<td>0.776</td>
<td>NA</td>
<td>Erosion of natural mineral deposits</td>
</tr>
<tr>
<td>Trichloroacetic Acid</td>
<td>ppb</td>
<td>2021</td>
<td>18.2</td>
<td>4.1–41.8</td>
<td>NA</td>
<td>NA</td>
<td>By-product of drinking water chlorination</td>
</tr>
</tbody>
</table>
Definitions

90th %ile: Out of every 10 homes sampled, 9 were at or below this level. This number is compared to the Action Level to determine lead and copper compliance.

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Source Water Assessment Program

Dartmouth

DEP has prepared a Source Water Assessment Program (SWAP) report for the water supply sources serving this water system. The SWAP report recommends that Dartmouth establish a wellhead protection committee and also commends us for taking an active role in promoting source protection measures in the water supply protection areas. The SWAP report recommends that we continue to monitor Zone I and remove all non-water supply activities. The report also recommends that we educate residents on ways they can help protect drinking water sources and work with emergency response teams to ensure they are aware of the stormwater drainage in Zone II. Residents can help protect sources by practicing good septic system maintenance, supporting water supply protection initiatives at town meetings, properly disposing of hazardous household chemicals during hazardous materials collection days, and limiting pesticide and fertilizer use.

The complete SWAP report is available at the Water Division on Allen Street and online at https://www.mass.gov/doc/dartmouth-water-division-swap-report/download. For more information, call Steven Sullivan at (508) 999-0742.

New Bedford

The SWAP program assesses the susceptibility of public water supplies to potential contamination by microbiological pathogens and chemicals. A susceptibility ranking of high was assigned to the New Bedford Water Division using the information collected during the assessment by DEP. The complete SWAP report is available at the Water Division Office, 1105 Shawmut Avenue, New Bedford. For more information, contact Dominic Galotti at (508) 979-1550.

Sampled in 2020.

Samples were taken during the first and fourth quarters.

Samples were taken quarterly with a resample for the final quarter taken January 3, 2022.

The value reported under Amount Detected for TOC is the lowest ratio of percentage of TOC actually removed to percentage TOC removed. A value of greater than 1 indicates that the water system is in compliance with TOC removal requirements. A value of less than 1 indicates a violation of the TOC removal requirements.

Sampled in 2020.

U.S. EPA and DEP have established public health advisory levels for manganese to protect against concerns of potential neurological effects and a 1-day and 10-day HA of 100 ppb for acute exposure.

Unregulated contaminants are those for which the U.S. EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist U.S. EPA in determining their occurrence in drinking water and whether future regulation is warranted.

DEP maintains a guideline of 20 ppm for sodium.

Sampled in 2022.

1 The MCL and the amount detected are based on the highest running annual average; the range represents individual sample results. Dartmouth commenced treatment of its filtered water with combined chlorine (chlorine and ammonia) as of March 2021. This is measured in terms of total chlorine.

2 The MCL and the amount detected are based on the highest running annual average; the range represents individual sample results. New Bedford Department of Public Infrastructure commenced treatment of its filtered water with combined chlorine (chlorine and ammonia) as of November 4, 2002. This is measured in terms of total chlorine.

3 Some people who drink water containing trihalomethanes or haloacetic acids in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous system and may have an increased risk of getting cancer.

4 The MCL and the amount detected are based on the highest running annual average; the range represents individual sample results.

5 This is a Dartmouth Water Division violation only.

6 Some people who drink water containing these PFAS in excess of the MCL may experience certain adverse effects. These could include effects on the liver, blood, immune system, thyroid, and fetal development. These PFAS may also elevate the risk of certain cancers.

7 Samples were taken during the first and fourth quarters.

8 Samples were taken quarterly with a resample for the final quarter taken January 3, 2022.

9 The value reported under Amount Detected for TOC is the lowest ratio of percentage of TOC actually removed to percentage TOC required to be removed. A value of greater than 1 indicates that the water system is in compliance with TOC removal requirements. A value of less than 1 indicates a violation of the TOC removal requirements.

10 Sampled in 2020.

11 U.S. EPA and DEP have established public health advisory levels for manganese to protect against concerns of potential neurological effects and a 1-day and 10-day HA of 100 ppb for acute exposure.

12 Unregulated contaminants are those for which the U.S. EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist U.S. EPA in determining their occurrence in drinking water and whether future regulation is warranted.

13 DEP maintains a guideline of 20 ppm for sodium.

14 Sampled in 2022.
What’s a Cross-Connection?

Cross-connections that contaminate drinking water distribution lines are a major concern. A cross-connection is formed at any point where a drinking water line connects to equipment (boilers), systems containing chemicals (air conditioning systems, fire sprinkler systems, irrigation systems), or water sources of questionable quality. Cross-connection contamination can occur when the pressure in the equipment or system is greater than the pressure inside the drinking water line (backpressure). Contamination can also occur when the pressure in the drinking water line drops due to fairly routine occurrences (main breaks, heavy water demand), causing contaminants to be sucked out from the equipment and into the drinking water line (backsiphonage).

Outside water taps and garden hoses tend to be the most common sources of cross-connection contamination at home. The garden hose creates a hazard when submerged in a swimming pool or attached to a chemical sprayer for weed killing. Garden hoses that are left lying on the ground may be contaminated by fertilizers, cesspools, or garden chemicals. Improperly installed valves in your toilet could also be a source of cross-connection contamination.

Community water supplies are continuously jeopardized by cross-connections unless appropriate valves, known as backflow prevention devices, are installed and maintained. We have surveyed industrial, commercial, and institutional facilities in the service area to make sure that potential cross-connections are identified and eliminated or protected by a backflow preventer. We also inspect and test backflow preventers to make sure that they provide maximum protection. For more information on backflow prevention, contact the Safe Drinking Water Hotline at (800) 426-4791.

Level 2 Assessment Update

Coliforms are bacteria that are naturally present in the environment and used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms, indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessments to identify and correct any problems.

During the past year, one Level 2 assessment was required for our water system. One Level 2 assessment was completed. In addition, we were required to take one corrective action, and we completed this action.

Tap vs. Bottled

Thanks in part to aggressive marketing, the bottled water industry has successfully convinced us all that water purchased in bottles is a healthier alternative to tap water. However, according to a four-year study conducted by the Natural Resources Defense Council (NRDC), bottled water is not necessarily cleaner or safer than most tap water. In fact, about 40 percent of bottled water is actually just tap water, according to government estimates.

The Food and Drug Administration (FDA) is responsible for regulating bottled water, but these rules allow for less rigorous testing and purity standards than those required by the U.S. EPA for community tap water. For instance, the high mineral content of some bottled waters makes them unsuitable for babies and young children. Further, the FDA completely exempts bottled water that’s packaged and sold within the same state, which accounts for about 70 percent of all bottled water sold in the United States.

People spend 10,000 times more per gallon for bottled water than they typically do for tap water. If you get your recommended eight glasses a day from bottled water, you could spend up to $1,400 annually. The same amount of tap water would cost about 49 cents. Even if you installed a filter device on your tap, your annual expenditure would be far less than what you’d pay for bottled water. For a detailed discussion on the NRDC study results, check out its website at https://goo.gl/Jxb6xG.